CITATION

Antaki, George. Fitness-For-Service and Integrity of Piping, Vessels, and Tanks: ASME Code Simplified. US: McGraw-Hill Education, 2005.

Fitness-For-Service and Integrity of Piping, Vessels, and Tanks: ASME Code Simplified

Authors:

Published:  2005

ISBN: 9780071453998 0071453997
  • Contents
  • Preface
  • Chapter 1. Principles
  • 1.1 What Is Fitness-for-Service?
  • 1.2 FFS and Conduct of Operations
  • 1.3 Fitness-for-Service of Old and New Equipment
  • 1.4 Workmanship and FFS
  • 1.5 FFS in Construction Codes
  • 1.6 The Fitness-for-Service Step
  • 1.7 Three Critical Questions
  • 1.8 Maintenance Strategy
  • 1.9 Pressure Boundary Integrity
  • 1.10 The Five Disciplines
  • 1.11 Regulatory Perspective
  • 1.12 Codes, Standards, and Guides
  • 1.13 Cum Laude
  • 1.14 Technical Basis
  • 1.15 Response Time
  • 1.16 Summary
  • References
  • Chapter 2. Materials
  • 2.1 Demand and Capacity
  • 2.2 Material Groups
  • 2.3 Ferrous Metals
  • 2.4 Nonferrous Metals
  • 2.5 Nonmetallic Materials
  • 2.6 Basis for Material Selections
  • 2.7 Mechanical Properties Overview
  • 2.8 How to Achieve Desired Properties
  • 2.9 Phase Diagram of Carbon Steel
  • 2.10 Heat Treatment
  • 2.11 Benefits of Postweld Heat Treatment
  • 2.12 Types of Heat Treatment
  • 2.13 Shop and Field Heat Treatment
  • 2.14 The Larson–Miller Parameter
  • 2.15 Heat and Lot
  • 2.16 The Three Strength Parameters
  • 2.17 Allowable Stress
  • 2.18 Obtaining Strength Properties of Operating Equipment
  • 2.19 Factors Affecting Strength Properties
  • 2.20 Ductility
  • 2.21 Ductile Fracture
  • 2.22 Brittle Fracture
  • 2.23 Toughness
  • 2.24 Charpy Toughness
  • 2.25 Fracture Toughness
  • 2.26 Toughness Exemption Curve
  • 2.27 Hardness
  • References
  • Chapter 3. Design
  • 3.1 Basic Design and Detailed Design
  • 3.2 Design Codes
  • 3.3 Design Minimum Wall tmin
  • 3.4 Future Corrosion Allowance FCA
  • 3.5 Loads, Stresses, and Strains
  • 3.6 Applied Loads and Residual Stresses
  • 3.7 General Stresses
  • 3.8 Example: Bending Stress
  • 3.9 Pressure Stress
  • 3.10 Pressure Stress Example
  • 3.11 Wall Thickness Selection
  • 3.12 Fossil Power Plant Example
  • 3.13 Butt-Welded Fittings
  • 3.14 Flanges
  • 3.15 Socket and Threaded Fittings
  • 3.16 Specialty Fittings and Components
  • 3.17 Vessel Example
  • 3.18 Design Principles
  • 3.19 Design Pressure
  • 3.20 Vessel Cylindrical Shell
  • 3.21 Spherical or Hemispherical Head
  • 3.22 Elliptical Head
  • 3.23 Torispherical Head
  • 3.24 Flat Head
  • 3.25 Comparison
  • 3.26 Plant Piping—ASME B31.3
  • 3.27 Plant Piping Moment Stress
  • 3.28 Applied Forces
  • 3.29 Liquid Pipelines—ASME B31.4
  • 3.30 Gas Pipelines
  • 3.31 Fatigue
  • 3.32 The ASME Boiler and Pressure Vessel Code Fatigue Method
  • 3.33 The Markl Fatigue Method
  • 3.34 Example of the Markl Method in Vibration
  • 3.35 The Fracture Mechanics Fatigue Method
  • 3.36 The AWS-AASHTO Fatigue Method
  • 3.37 Fatigue Testing
  • 3.38 ASME Stress Classification along a Line
  • 3.39 External Pressure
  • References
  • Chapter 4. Fabrication
  • 4.1 Fabrication and Construction Flaws
  • 4.2 Base Metal Defects
  • 4.3 Fabrication Flaws
  • 4.4 Welding Techniques
  • 4.5 Carbon Equivalent
  • 4.6 Weld Quality
  • 4.7 Welding in Service
  • 4.8 Pressure or Leak Testing—How?
  • 4.9 Pressure or Leak Testing—Why?
  • 4.10 Pressure or Leak Testing—Cautions
  • 4.11 Test Pressure for Tanks
  • 4.12 Test Pressure for Pressure Vessels
  • 4.13 Test Pressure for Power Piping
  • 4.14 Test Pressure for Process Piping
  • 4.15 Test Pressure for Liquid Pipelines
  • 4.16 Test Pressure for Gas Pipelines
  • 4.17 Mill and Handling Flaws
  • 4.18 Field Weld Flaws
  • 4.19 Weld Size
  • 4.20 Residual Stress
  • 4.21 Measuring Residual Stresses
  • 4.22 Calculating Residual Stresses
  • 4.23 Mechanical Joint Flaws
  • References
  • Chapter 5. Degradation
  • 5.1 Corrosion
  • 5.2 The Corrosion Engineer’s Perspective
  • 5.3 The Facility Engineer’s Perspective
  • 5.4 Damage
  • 5.5 Degradation and Fitness-for-Service
  • 5.6 Understanding Wall Thinning Mechanisms
  • 5.7 The Electrochemical Cell
  • 5.8 The Single Metal Electrochemical Cell
  • 5.9 The Galvanic Cell
  • 5.10 Concentration Cell
  • 5.11 Size Effect
  • 5.12 Parameters Affecting Corrosion Rate
  • 5.13 Predicting Corrosion Rate—Is It Linear?
  • 5.14 Predicting Corrosion Rate—Time in Service
  • 5.15 Deposits and Tuberculation
  • 5.16 General Corrosion
  • 5.17 Galvanic Corrosion
  • 5.18 Pitting
  • 5.19 Crevice Corrosion
  • 5.20 Corrosion under Insulation
  • 5.21 Liquid-Line Corrosion
  • 5.22 Microbial-Induced Corrosion
  • 5.23 MIC Prevention
  • 5.24 MIC Mitigation
  • 5.25 Carbon Dioxide Corrosion
  • 5.26 Erosion
  • 5.27 Cavitation
  • 5.28 Vapor-Liquid Erosion
  • 5.29 Erosion in Gas-Liquid Service
  • 5.30 Liquid Pipelines
  • 5.31 Liquid-Sand Pipelines
  • 5.32 Erosion-Corrosion
  • 5.33 Environmental-Assisted Cracking Mechanisms
  • 5.34 Corrosion Fatigue
  • 5.35 Sensitized Stainless Steel
  • 5.36 Sour Corrosion
  • 5.37 Blisters and Cracks
  • 5.38 High-Temperature Corrosion
  • 5.39 Measuring Corrosion and Corrosion Rates
  • 5.40 Coating
  • 5.41 Common Coatings
  • 5.42 Selection
  • 5.43 Surface Preparation
  • 5.44 Wrap Tape
  • 5.45 Epoxy
  • 5.46 Coal Tar Enamel
  • 5.47 Heat-Shrinkable Sleeves
  • 5.48 Multilayer Coating
  • 5.49 Coating Performance
  • 5.50 Coating Quality Control
  • 5.51 Comparison
  • 5.52 Practical Challenges
  • References
  • Chapter 6. Inspection
  • 6.1 Principles of Inspection
  • 6.2 Why?
  • 6.3 What?
  • 6.4 Where?
  • 6.5 How?
  • 6.6 When?
  • 6.7 Risk-Based Inspection—What Is Risk?
  • 6.8 A Number or a Matrix
  • 6.9 The Objective of RBI
  • 6.10 Necessary and Sufficient
  • 6.11 Is RBI a Cost-Saving?
  • 6.12 Qualitative or Quantitative RBI
  • 6.13 RBI: A Seven-Step Process
  • 6.14 Qualitative RBI
  • 6.15 Example of Qualitative RBI—Steam Systems
  • 6.16 Semiquantitative RBI—Likelihood
  • 6.17 Semiquantitative RBI—Consequence
  • 6.18 Fully Quantitative RBI—Likelihood
  • 6.19 General Metal Loss Example
  • 6.20 Limit State Function for a Crack
  • 6.21 Crack Example
  • 6.22 Likelihood Reduction Options
  • 6.23 Correction for Reliability
  • 6.24 Fully Quantitative Consequence
  • 6.25 Advantages of Applying RBI
  • 6.26 Cautions When Applying RBI
  • 6.27 Integrity Programs for Pipelines
  • 6.28 Overview of Inspection Techniques for Tanks, Vessels, and Pipes
  • 6.29 Visual Examination (VT)
  • 6.30 Magnetic Particle Testing (MT)
  • 6.31 Liquid Penetrant Testing (PT)
  • 6.32 Radiographic Testing (RT)
  • 6.33 Ultrasonic Testing (UT)
  • 6.34 Long-Range Guided Wave Ultrasonic Inspection
  • 6.35 Eddy Current Testing
  • 6.36 Magnetic Flux Leakage
  • 6.37 Acoustic Emission Testing (AE)
  • 6.38 Pig Inspections of Pipelines
  • 6.39 Leak Detection Systems
  • 6.40 Direct Assessment
  • References
  • Chapter 7. Thinning
  • 7.1 Three Categories of Wall Thinning
  • 7.2 Leak or Break
  • 7.3 When Is Corrosion Considered General?
  • 7.4 Principles of Evaluation for GML
  • 7.5 Limitations
  • 7.6 Buckling
  • 7.7 Ultrasonic Grid
  • 7.8 Storage Tank Example
  • 7.9 API 653 Tank Thickness
  • 7.10 Tank Fitness-for-Service—Level 1
  • 7.11 Resolution
  • 7.12 Tank Fitness-for-Service—Level 2
  • 7.13 Power Plant Pipe Rupture
  • 7.14 Power Pipe Fitness-for-Service—Level 1
  • 7.15 Process Pipe Fitness-for-Service—Level 1
  • 7.16 ASME B31G for Pipelines: What Is It?
  • 7.17 Basis of ASME B31G
  • 7.18 Derating a Pipeline
  • 7.19 B31G Example for Gas Pipeline
  • 7.20 Modified B31G
  • 7.21 The RSTRENG® Method
  • 7.22 The Remaining Strength Factor in B31G
  • 7.23 Steam Condensate
  • 7.24 The ASME VIII, Div.1, App. 32 Method
  • 7.25 The ASME XI Code Case N-480 Method
  • 7.26 Widespread Pitting
  • 7.27 Localized Pitting
  • 7.28 Example Pitting in Pipeline
  • 7.29 Simple Criterion
  • References
  • Chapter 8. Geometric Defects
  • 8.1 Integrity of Geometric Defects
  • 8.2 Assessment Steps
  • 8.3 Distorted Tank Bottom Example
  • 8.4 Accidentally Bent Riser Example
  • 8.5 Dents in Pipelines
  • 8.6 Dents with Gouges
  • 8.7 Wrinkles and Buckles
  • 8.8 Mild Ripples
  • 8.9 Blisters
  • 8.10 Fitness-for-Service of Equipment with Blisters
  • 8.11 Assessment of Weld Misalignment and Shell Distortions
  • 8.12 Fitness-for-Service Assessment of Peaking
  • 8.13 Deformed and Repaired Vessel Explosion
  • 8.14 Defects Beyond Assessment
  • References
  • Chapter 9. Cracks
  • 9.1 Cracklike Flaws
  • 9.2 Crack Stability
  • 9.3 Stress Intensity
  • 9.4 Example—Crack in Pipeline
  • 9.5 Stress Intensity Solutions
  • 9.6 Fracture Toughness
  • 9.7 Weld Residual Stresses
  • 9.8 Ligament Reference Stress
  • 9.9 Flow Stress
  • 9.10 Foundation of Fracture Assessment, the FAD
  • 9.11 The 15 Steps of Crack Analysis
  • 9.12 Vessel Example
  • 9.13 Margin to Failure
  • 9.14 Leak Through Cracks
  • 9.15 Application of Fracture Mechanics to Fatigue
  • References
  • Chapter 10. Creep Damage
  • 10.1 What Is Creep?
  • 10.2 High-Temperature Corrosion
  • 10.3 The Difficulties of Creep Analysis and Predictions
  • 10.4 Short- and Long-Term Overheating
  • 10.5 Creep Assessment Methods
  • 10.6 ASME III NH Method
  • 10.7 Operating Loads
  • 10.8 Time-Independent Material Properties
  • 10.9 Time-Dependent Material Properties
  • 10.10 Creep Life Analysis
  • 10.11 Qualification
  • 10.12 API 530 Creep Assessment
  • 10.13 Nondestructive Assessment
  • 10.14 High-Temperature B31.3 Pipe Application
  • 10.15 Draft Method of API 579 Level 1
  • 10.16 Life Fraction Analysis
  • 10.17 Thinned Wall Remaining Life
  • 10.18 Metallographic Life Assessment
  • References
  • Chapter 11. Overload
  • 11.1 Overloads in Practice
  • 11.2 Overpressure Allowance
  • 11.3 Overpressure beyond Allowance
  • 11.4 Key Considerations for Overpressure
  • 11.5 Waterhammer Overload
  • 11.6 Bolted Joint Failure
  • 11.7 The Bullet Pig
  • 11.8 Detonations and Deflagrations
  • 11.9 Explosion Pressures
  • 11.10 Explosion Damage
  • 11.11 Example—Deflagration in Pipe
  • 11.12 Material Strength at High Strain Rates
  • 11.13 Explosive Rupture and Fragmentation
  • 11.14 Effect of External Explosions
  • 11.15 Natural Phenomena Hazards
  • 11.16 Fitness-for-Service by Plastic or Collapse Analysis
  • 11.17 Bending Failure
  • References
  • Chapter 12. Failure Analysis
  • 12.1 Failure Mode and Effects
  • 12.2 Root Cause Failure Analysis
  • 12.3 Failure Analysis Tools
  • 12.4 Leak-before-Break (LBB)
  • 12.5 Stored Energy Associated with Flashing Liquids
  • 12.6 Hydrotest Failure
  • 12.7 Gas or Liquid Contents
  • 12.8 The Tank Top Example
  • 12.9 Tanks with Frangible Roof Design
  • 12.10 Stored Energy
  • 12.11 Leak-before-Break Using the Failure Assessment Diagram
  • References
  • Chapter 13. Repairs
  • 13.1 Repair Work Package
  • 13.2 Postconstruction Codes and Standards
  • 13.3 Temporary or Permanent Repair?
  • 13.4 Safety
  • 13.5 Regulatory Requirements
  • 13.6 Common Considerations for Materials
  • 13.7 Common Considerations for Design
  • 13.8 Common Considerations for Fabrication—Welding
  • 13.9 Controlled Deposition Welding
  • 13.10 Postconstruction Standards for Controlled Deposition
  • 13.11 Common Considerations for Fabrication—Nonwelding
  • 13.12 Common Considerations for Examination
  • 13.13 Common Considerations for Testing
  • 13.14 Common Considerations for Quality Control
  • 13.15 Replacement
  • 13.16 Flush Patch Repair
  • 13.17 Example of Flush Patch Repair
  • 13.18 Flaw Excavation
  • 13.19 Example of Flaw Excavation Repair
  • 13.20 Weld Overlay
  • 13.21 Full Encirclement Welded Sleeve
  • 13.22 Welded Leak Box
  • 13.23 Fillet-Welded Patch
  • 13.24 Mechanical Clamp
  • 13.25 Inserted Liner
  • 13.26 Pipe Splitting
  • 13.27 Sacrificial Component
  • 13.28 Nonmetallic Wrap
  • References
  • Appendix. WRC Bulletins
  • Index