CITATION

Day, Robert. Foundation Engineering Handbook 2/E. US: McGraw-Hill Professional, 2010.

Foundation Engineering Handbook 2/E

Authors:

Published:  August 2010

eISBN: 9780071740104 0071740104 | ISBN: 9780071740098
  • Contents
  • Preface
  • Acknowledgments
  • Chapter 1. Introduction
  • 1.1. Definitions
  • 1.2. Project Requirements
  • 1.3. Preliminary Information and Planning the Work
  • 1.4. Engineering Geologist
  • 1.5. Outline of Chapters
  • Part 1 Geotechnical Engineering
  • Chapter 2. Subsurface Exploration
  • 2.1. Introduction
  • 2.2. Document Review
  • 2.3. Purpose of Subsurface Exploration
  • 2.4. Borings
  • 2.5. Test Pits and Trenches
  • 2.6. Preparation of Logs
  • 2.7. Geophysical Techniques
  • 2.8. Geotechnical Earthquake Engineering
  • 2.9. Subsoil Profile
  • Notation
  • Problems
  • Chapter 3. Laboratory Testing
  • 3.1. Introduction
  • 3.2. Index Tests
  • 3.3. Oedometer Test
  • 3.4. Shear Strength of Cohesionless Soil
  • 3.5. Shear Strength of Cohesive Soil
  • 3.6. Laboratory Compaction Tests
  • 3.7. Permeability Tests
  • Notation
  • Problems
  • Chapter 4. Soil Mechanics
  • 4.1. Introduction
  • 4.2. Soil Classification
  • 4.3. Phase Relationships
  • 4.4. Effective Stress
  • 4.5. Stress Distribution
  • 4.6. Total Stress and Effective Stress Analyses
  • 4.7. Permeability and Seepage
  • Notation
  • Problems
  • Part 2 Foundation Design
  • Chapter 5. Shallow and Deep Foundations
  • 5.1. Introduction
  • 5.2. Selection of Foundation Type
  • 5.3. Shallow Foundations
  • 5.4. Deep Foundations
  • Problems
  • Chapter 6. Bearing Capacity of Foundations
  • 6.1. Introduction
  • 6.2. Bearing Capacity for Shallow Foundations
  • 6.3. Bearing Capacity for Deep Foundations
  • 6.4. Lateral Load Capacity of Deep Foundations
  • 6.5. Geotechnical Earthquake Engineering
  • Notation
  • Problems
  • Chapter 7. Settlement of Foundations
  • 7.1. Introduction
  • 7.2. Collapsible Soil
  • 7.3. Settlement of Cohesionless Soil
  • 7.4. Other Common Causes of Settlement
  • 7.5. Foundations on Rock
  • 7.6. Allowable Settlement
  • Notation
  • Problems
  • Chapter 8. Consolidation
  • 8.1. Introduction
  • 8.2. Laboratory Consolidation Test
  • 8.3. Immediate Settlement
  • 8.4. Primary Consolidation
  • 8.5. Rate of Primary Consolidation
  • 8.6. Secondary Compression
  • 8.7. Consolidation of Soil beneath Shallow Foundations
  • 8.8. Consolidation of Soil beneath Deep Foundations
  • 8.9. Settlement of Unsaturated Cohesive Soil
  • Notation
  • Problems
  • Chapter 9. Foundations on Expansive Soil
  • 9.1. Introduction
  • 9.2. Expansion Potential
  • 9.3. Basic Expansive Soil Principles
  • 9.4. Methods Used to Predict Foundation Movement
  • 9.5. Foundation Design for Expansive Soil
  • 9.6. Flatwork
  • 9.7. Expansive Rock
  • Notations
  • Problems
  • Chapter 10. Slope Stability
  • 10.1. Introduction
  • 10.2. Rockfall
  • 10.3. Surficial Slope Stability
  • 10.4. Gross Slope Stability
  • 10.5. Landslides
  • 10.6. Debris Flow
  • 10.7. Slope Softening and Creep
  • Notations
  • Problems
  • Chapter 11. Retaining Walls
  • 11.1. Introduction
  • 11.2. Simple Retaining Wall without Wall Friction
  • 11.3. Simple Retaining Wall with Wall Friction
  • 11.4. Design and Construction of Retaining Walls
  • 11.5. Restrained Retaining Walls
  • 11.6. Mechanically Stabilized Earth Retaining Walls
  • 11.7. Sheet Pile Walls
  • 11.8. Temporary Retaining Walls
  • 11.9. Moisture Migration through Basement Walls
  • Notation
  • Problems
  • Chapter 12. Foundation Deterioration and Cracking
  • 12.1. Introduction
  • 12.2. Timber Decay
  • 12.3. Sulfate Attack of Concrete
  • 12.4. Frost
  • 12.5. Historic Structures
  • 12.6. Shrinkage Cracking
  • 12.7. Moisture Migration through Slab-on-Grade Foundations
  • Chapter 13. Geotechnical Earthquake Engineering for Soils
  • 13.1. Introduction
  • 13.2. Basic Earthquake Principles
  • 13.3. Peak Ground Acceleration
  • 13.4. Liquefaction
  • 13.5. Slope Stability
  • Notation
  • Problems
  • Chapter 14. Geotechnical Earthquake Engineering for Foundations and Retaining Walls
  • 14.1. Introduction
  • 14.2. Earthquake Structural Damage
  • 14.3. Foundation Settlement
  • 14.4. Retaining Walls
  • 14.5. Foundation Alternatives to Mitigate Earthquake Effects
  • Notation
  • Problems
  • Part 3 Foundation Construction
  • Chapter 15. Grading and Other Soil Improvement Methods
  • 15.1. Grading
  • 15.2. Compaction
  • 15.3. Soil Improvement Methods
  • Notation
  • Problems
  • Chapter 16. Foundation Excavation, Underpinning, and Field Load Tests
  • 16.1. Introduction
  • 16.2. Foundation Excavation and Construction
  • 16.3. Field Load Tests
  • 16.4. Foundation Underpinning
  • 16.5. Observational Method
  • Chapter 17. Geosynthetics and Instrumentation
  • 17.1. Introduction
  • 17.2. Geosynthetics
  • 17.3. Instrumentation
  • Part 4 2009 International Building Code
  • Chapter 18. International Building Code Regulations for Soils
  • 18.1. Introduction
  • 18.2. Soils Investigation
  • 18.3. Excavation, Grading, and Fill
  • 18.4. Presumptive Load-Bearing Values of Soils
  • 18.5. Expansive Soil
  • Chapter 19. International Building Code Regulations for Foundations
  • 19.1. Introduction
  • 19.2. General Regulations for Footings and Foundations
  • 19.3. Foundations Adjacent Slopes
  • 19.4. Retaining Walls
  • 19.5. Geotechnical Earthquake Engineering
  • Appendix A. Glossary
  • A.1. Subsurface Exploration Terminology
  • A.2. Laboratory Testing Terminology
  • A.3. Terminology for Engineering Analysis and Computations
  • A.4. Compaction, Grading, and Construction Terminolgy
  • A.5. Geotechnical Earthquake Engineering Terminolgy
  • Bibliography
  • Appendix B. Example of a Foundation Engineering Report
  • B.1. Introduction
  • B.2. Site Observations
  • B.3. Geology
  • B.4. Site Investigation
  • B.5. Conclusions
  • B.6. Foundation Recommendations
  • B.7. Other Considerations
  • B.8. Closure
  • Appendix C. Solutions to Problems
  • Appendix D. Conversion Factors
  • Appendix E. Bibliography
  • Index